timeseries_qice_gt.py 4.72 KB
Newer Older
1
2
3
4
5
6
7
8
import os
import numpy as np
import matplotlib.pyplot as plt

from netCDF4 import Dataset

from livvkit.util import elements as el

9
describe = """TimeSeries_QICE_GT and BoxPlot_QICE_GT plot."""
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135


def make_plot(config=None, out_path='.',
              racmo_path='/lustre/atlas1/cli115/world-shared/4ue/racmo23_GRN_monthly/',
              cesm_path='/lustre/atlas1/cli115/world-shared/4ue/b.e10.BG20TRCN.f09_g16.002/'):
    # ---------------- Data source in rhea, the two files save the same data ------------------------
    f_cesm_lnd_ts_qice = os.path.join(cesm_path, 'postproc', 'lnd', 'tseries',
                                      'b.e10.BG20TRCN.f09_g16.002.clm2.aavg.h0.yrly_ai.QICE.nc')
    f_racmo_ts_smb_aavg = os.path.join(racmo_path, 'tseries/racmo23_GRN_monthly.smb.ann_tseries_aavg.nc')
    # --------------------------------------------------------------

    img_list = []

    # read f_cesm_lnd_ts_qice
    # time from 100-255, both time and acab have 156 data
    ncid1 = Dataset(f_cesm_lnd_ts_qice, mode='r')
    time = ncid1.variables['time'][:]
    acab = ncid1.variables['QICE'][:]  # m/yr

    # unit transfer
    acab = acab * 3.156e7  # convert from mm/s to kg/m^2/yr
    acab = acab * 1.7  # Convert to Gt/yr, for validation, compare to V13
    time = (time - time[1]) / 365 + 1851  # time from 1851-2006

    # read f_racmo_ts_smb_aavg
    ncid2 = Dataset(f_racmo_ts_smb_aavg, mode='r')
    time2 = ncid2.variables['time'][:]
    smb = ncid2.variables['smb'][:]  # mmWE = kg/m2
    smb = smb * 1.7  # unit Transfer to Gt from kg/m2

    # NOTE: add months to make the full year, divide my motnhs to get years, add to get 1958
    time2 = (time2 + 6.5) / 12 + 1957

    # maxacab = (np.max(acab))
    # minacab = (np.min(acab))
    # maxtime = (np.max(time))
    # mintime = (np.min(time))
    # maxsmb = (np.max(smb))
    # minsmb = (np.min(smb))
    # maxtime2 = (np.max(time2))
    # mintime2 = (np.min(time2))

    # print("Max QICE: {}".format(maxacab))
    # print("Min QICE: {}".format(minacab))
    # print("Max time: {}".format(maxtime))
    # print("Min time: {}".format(mintime))
    # print("Max smb Gt/yr: {}".format(maxsmb))
    # print("Min smb Gt/yr: {}".format(minsmb))
    # print("Max time2: {}".format(maxtime2))
    # print("Min time2: {}".format(mintime2))

    # ------- Time Series PLOT --------
    fig = plt.figure(figsize=(8, 4))
    ax = fig.add_subplot(111)

    ax.plot(time, acab, 'r-')
    ax.plot(time2, smb, 'b-')

    ax.set_ylim(0, 700)
    ax.set_xlim(1851, 2013)
    ax.xaxis.set_ticks(np.arange(1851, 2013, 26))
    ax.set_xticklabels(['1851', '1877', '1903', '1929', '1955', '1981', '2006'])
    ax.set_ylabel('SMB (kg/m2/yr)', fontsize=14)
    ax.set_xlabel('time', fontsize=14)
    # ax.text(-12,5,'T-2m, JJA',fontsize=18)
    # ax.legend([s1,s2],['>20%','>99%'],loc='lower right')

    ts_img_path = os.path.join(out_path, 'TimeSeries_QICE_GT.png')
    plt.savefig(ts_img_path)
    plt.close()

    img_link = os.path.join(os.path.basename(out_path),
                            os.path.basename(ts_img_path))
    img_elem = el.image('TimeSeries_QICE_GT',
                        ' '.join(describe.split()),
                        img_link)
    if config:
        img_elem['Height'] = config['image_height']
    img_list.append(img_elem)

    # ------ Box plot of statistics ---------
    # If I have 3 sets of data, put them a matrix with 3 columns,
    # then boxplot(matrix) in one figure data=[a1,a2,a3]

    fig = plt.figure(figsize=(8, 4))

    # --- the whisker shows [Q1-1.5IQR, Q3+1.5IQR] without outliners
    # ax = fig.add_subplot(121)
    # ax.boxplot(acab,0,'')
    # ax.set_ylim([0,230])
    # ax.set_ylabel('acab(kg/m2/yr)',fontsize=14)
    # ax.set_xticklabels('')

    # --- the whisker shows [Q1-1.5IQR, Q3+1.5IQR] with outliners
    # --- where the Q1 is 25% percentile and Q3 is 75% percential, IQR=Q3-Q1
    # --- the outlier is data point located outside the whiskers.
    ax = fig.add_subplot(121)
    ax.boxplot(acab, sym='gd')
    ax.set_ylabel('SMB(Gt/yr)', fontsize=14)
    ax.set_ylim(-50, 230)
    ax.set_xticklabels('')
    ax = fig.add_subplot(122)
    ax.boxplot(smb, sym='gd')
    ax.set_ylabel('SMB(Gt/yr)', fontsize=14)
    ax.set_ylim(-50, 230)
    ax.set_xticklabels('')

    bx_img_path = os.path.join(out_path, 'BoxPlot_QICE_GT.png')
    plt.savefig(bx_img_path)
    plt.close()

    img_link = os.path.join(os.path.basename(out_path),
                            os.path.basename(bx_img_path))
    img_elem = el.image('BoxPlot_QICE_GT',
                        ' '.join(describe.split()),
                        img_link)
    if config:
        img_elem['Height'] = config['image_height']
    img_list.append(img_elem)

    return img_list


if __name__ == '__main__':
    plt.switch_backend('agg')
    make_plot()